Minimum complexity regression estimation with weakly dependent observations
نویسندگان
چکیده
The minimum complexity regression estimation framework, due to Andrew Barron, is a general data-driven methodology for estimating a regression function from a given list of parametric models using independent and identically distributed (i.i.d.) observations. We extend Barron’s regression estimationframework tom-dependent observations and to stronglymixing observations. In particular, we propose abstractminimumcomplexity regression estimators for dependent observations, which may be adapted to a particular list of parametric models, and establish upper bounds on the statistical risks of the proposed estimators in terms of certain deterministic indices of resolvability. Assuming that the regression function satisfies a certain Fourier transform-type representation, we examine minimum complexity regression estimators adapted to a list of parametric models based on neural networks and, by using the upper bounds for the abstract estimators, we establish rates of convergence for the statistical risks of these estimators. Also, as a key tool, we extend the classical Bernstein inequality from i.i.d. random variables tom-dependent processes and to strongly mixing processes.
منابع مشابه
Adaptive estimation of an additive regression function from weakly dependent data
A d-dimensional nonparametric additive regression model with dependent observations is considered. Using the marginal integration technique and wavelets methodology, we develop a new adaptive estimator for a component of the additive regression function. Its asymptotic properties are investigated via the minimax approach under the L2 risk over Besov balls. We prove that it attains a sharp rate ...
متن کاملUse of minimum risk approach in the estimation of regression models with missing observations
This article considers a linear regression model with some missing observations on the response variable and presents two estimators of regression coefficients employing the approach of minimum risk estimation. Asymptotic properties of these estimators along with the traditional unbiased estimator are analyzed and conditions, that are easy to check in practice, for the superiority of one estima...
متن کاملA NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION
Logistic regression analysis is used to model categorical dependent variable. It is usually used in social sciences and clinical research. Human thoughts and disease diagnosis in clinical research contain vagueness. This situation leads researchers to combine fuzzy set and statistical theories. Fuzzy logistic regression analysis is one of the outcomes of this combination and it is used in situa...
متن کاملFeasible Multivariate Nonparametric Regression Estimation Using Weak Separability
One of the main practical problems of nonparametric regression estimation is the curse of dimensionality. The curse of dimensionality arises because nonparametric regression estimates are dependent variable averages local to the point at which the regression function is to be estimated. The number of observations ‘local’ to the point of estimation decreases exponentially with the number of dime...
متن کاملRobust Estimation in Linear Regression Model: the Density Power Divergence Approach
The minimum density power divergence method provides a robust estimate in the face of a situation where the dataset includes a number of outlier data. In this study, we introduce and use a robust minimum density power divergence estimator to estimate the parameters of the linear regression model and then with some numerical examples of linear regression model, we show the robustness of this est...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 42 شماره
صفحات -
تاریخ انتشار 1996